找回密码
 立即注册
搜索
热搜: 邀请码
查看: 204|回复: 0

[编程技术] 《精通Power Query》作者:[加] 肯·普尔斯(Ken Puls)译者:BI 佐罗团队【EPUB】

[复制链接]
  • 打卡等级:热心大叔
  • 打卡总天数:203
  • 打卡月天数:15
  • 打卡总奖励:473
  • 最近打卡:2024-12-25 22:05:20

540

主题

3

回帖

998

积分

管理员

积分
998
发表于 2024-11-27 22:03:31 | 显示全部楼层 |阅读模式
191047hdayd2dl8a2gd2di.jpg


作者: [加拿大] 肯·普尔斯(Ken Puls)
出版社: 人民邮电出版社
出品方: 异步图书
副标题: Power
原作名: Master Your Data with Power Query in Excel and Power BI
译者: BI 佐罗团队
出版年: 2023-11
页数: 420
定价: 159.80元
装帧: 平装
丛书: 人人都是数据分析师系列
ISBN: 9787115607744



内容简介  :

本书是Power Query领域的经典之作,旨在让读者用正确而高效的方法精通Power Query。本书是两位作者多年积累的业务和IT工作经验总结,同时也是全球Power Query顶级社群的大咖经验提炼。本书从业务背景出发,在业务和IT之间做到了良好的平衡,系统化地给出了Power Query的思维框架和模式,同时按照多个企业级业务场景一一展示其实用性。

无论你是Power Query的新手还是经验丰富的ETL专家,都可以从各自的角度领略Power Query 和M语言的魅力。对于业务用户,本书给出了日常办公所涉及的大量复杂数据问题解法的直接参考,并提供了大量案例,可以直接应用。对于专业用户,本书给出了搭建大型专业数据项目的框架性流程指导及优化建议,并提供了相关案例,也可以直接复用。

【专业书评】

作为PQ、PP和Power BI的忠实用户,我由衷地感谢BI佐罗团队能翻译这本书。书中不仅涵盖了PQ的各种使用技巧,更是自始至终地贯穿着Ken和Miguel的设计思考,让读者在掌握技术的同时更能体会每个技术点背后的精妙逻辑。正是这些思考和逻辑,让PQ不仅仅是一个数据清理的工具,更是一个数据处理思维的全新起点。

——张丹,能源公司CFO

微软已经将Power Query纳入数据处理的多种平台,这项技术是经过真实用户反馈检验的,可以使业务人员不再依赖SQL等技术,掌握数据处理和分析的技能。如果你正准备整理自己的数据,Power Query是正确的选择,而学习Power Query,这本书就是正确的选择。

一旦开始阅读,你就能感受到用Power Query 零代码即可整理数据的魔力。

——Kyle,微软中国云(Azure China)技术支持经理

对于学习和运用Power Query,我仍然处于摸索的阶段。我认为可以将这本书和译者的博客,当作产品手册和词典来使用与查询:初读可对Power Query有完整的了解并学会使用,此后再遇到各类问题可据此来寻找答案,裨补阙漏,必能有所广益。

——肖伦,LVMH集团数据分析师

菲仕乐(Fissler)近几年逐步开始重视数字化管理,SAP标准化数据的整合结合Power BI的大数据管理是集团未来的转型目标。作为全资子公司的菲仕乐贸易(上海)有限公司(Fissler China Ltd.,菲仕乐中国),我们早于集团对Power BI 进行了部署,与BI佐罗老师合作,已完美实现了历史数据的清理和国内数据构架的搭建,财务数据库呈现的效果超过我们的预期,也受到管理层的一致好评。

——Cindy,菲仕乐中国财务IT 总监

在这个数据时代,我们或多或少需要跟数据打交道。掌握数据分析工具的使用方法,才能更好地深入研究业务。而Power Query,可以说是最有性价比的工具之一,不需要你有技术背景也能轻松入门。而这本书,就是一本从入门到精通的落地指南,其系统化的思维框架和实操案例,为工作中的各种实际难题提供高效的解决方案。如果你希望从每天繁杂的数据中解脱出来,提高分析效率,开拓分析思路,那这本书是一个优秀的选择。

——张航,第5 届Power BI 可视化大赛一等奖获得者

无论是Excel还是Power BI,做出一份完美的报表或报告,少不了数据的清理与准备,这看不见的工作量很可能占了总工作量的80%。这项工作可以请IT人员或者顾问支持解决,也可以由业务人员自学SQL和Python搞定。但现实是,你可能没有预算请别人做,也可能觉得自学新的语言太难。这时Power Query就为非技术出身的业务人员提供了一个“当家作主”的好机会——做数据的主人。为此,你需要的只是几杯咖啡的预算,来拥有这本书。

——王诗琛,第5 届Power BI 可视化大赛“最具推广价值奖”获得者

《精通Power Query》是目前少有的可以体系化学习Power Query的佳作,书中案例覆盖了多数的数据整理常见场景,对实际操作极具指导意义,适合放在手边时常查阅。对于经常和数据打交道的各行各业人士来说,这是本值得一读再读的好书。

——陆俊峰,第5 届Power BI 可视化大赛“最佳展现创意奖”获得者

自从Power Query面世以来,Excel数据处理能力发生了指数级变革。使用Power Query可以让你“弯道超车”,轻松地完成原本需要高难度的Excel公式甚至编写VBA代码或其他程序语言才能完成的数据整理工作。这本书是一本难得的Power Query“驾车指南”,内容翔实,通俗易懂,能让你快速掌握Power Query 这一利器。

——张震,《智能管理会计:从Excel到Power BI 的业务与财务分析》作者

谁都无法否认,Excel是非常重要且好用的数据分析工具。但是有很多业务一线的小伙伴告诉过我,大量的重复的数据清理工作占去了他们40%到80%的工作时间,这极大地影响了他们的工作效率。这说明他们缺少了Power Query 的学习。在Power Query 学习领域,“猴子书”久负盛名,但一直没有被引进国内。在BI佐罗团队的努力下,中文版终于面世了。如果你和我的小伙伴们一样,被数据清理工作所困扰,那么这本书你一定要细细研读,这能让你的工作效率提升好几倍!

——孙光,小米数据分析师

这本书由浅入深、由基础到进阶地介绍了Power Query 和M函数,适用于各个阶段的读者学习:为初入门的小白构建了一套完整的Power Query知识体系,为已入门的专业人士提供了一系列优化查询的最佳实践,为业务伙伴指导了针对实际业务问题的解决方案。两位作者作为该领域的领跑者,从实际工作经验出发,将业务与IT完美平衡,使得这本书不仅仅停留在技术理论的“传道”层面,更是为实际业务提供了优秀参考,让读者能够即学即用,学以致用。强烈推荐这本书!

——徐露,碧迪医疗数据分析师

这本书是学习Power Query的经典之作的第二版,两位作者融合了高超的技术能力和推荐词丰富的业务应用场景,帮助读者能够循序渐进地入门并精通这套Power BI 与Excel中的数据处理利器。同时这本书也是BI佐罗团队在DAX的精进和实践外,潜心付出、翻译后,带给广大Power BI用户的又一硕果。这本书配合BI佐罗团队的视频课程一同学习,将让你的数字化能力成倍提升。

——陆文捷,物流供应链BI分析师,《DAX设计模式》译者之一

熟悉这本书前半部分后,你就可以通过Power Query直观的界面,完成数据准备的大部分工作。如果你还想解决别人没办法处理的难题,则可以选择继续深入到M语言、优化查询与自动化等进阶内容。这本书帮助我用更聪明的方法,高效进行数据提取、转换和加载,进而让我得以全力聚焦于更重要的一环:挖掘出在数据中潜藏的风险、机遇与更多的价值。如果有时间的话,现在就开始吧,相信你也一定能从中受益。

——蔡至洁,BI分析师

感谢BI佐罗老师的课程能够让我感悟到正确和智慧的数据分析思维。我通过两年时间的努力做到了别人四五年才能达到的工作状态,现在继续用这套思维体系服务于世界五百强企业。如果你也像曾经的我陷于纠结之中,那我推荐你通过这本书学习这套技术。

——Nancy,商业数据分析师



作者简介  :

肯·普尔斯(Ken Puls) 是加拿大特许专业会计师,微软 Excel MVP。他经营着 Excelguru 咨询公司,并通过 Skillwave培训平台教用户如何使用 Excel 和 Power BI。

米格尔·埃斯科瓦尔 (Miguel Escobar),在编写本书的时候是微软 Power BI MVP,并在巴拿马经营着一家名为 Powered Solutions 的咨询公司。在本书英文版即将出版时,米格尔收到一份令人兴奋的邀请函,即加入微软 Power Query 团队担任项目经理。


BI 佐罗团队,是基于对数据分析的爱好而形成的爱好者社区,活跃成员包括微软MVP、LVMH集团数据分析师、企业CFO等。2015年以来,经过多年发展,团队已经孵化出不同行业的数据咨询类企业,尤其在零售、快消、餐饮、汽车等行业聚集和沉淀了专业的研究成果,且已为50余家企业提供了数字化转型“开箱即用”的落地方案。团队通过“PowerBI战友联盟”的微信公众号、“BI佐罗”的小红书、B站、抖音等平台,持续为社区带来知识分享,也欢迎广大爱好者一起交流讨论。


游客,如果您要查看本帖隐藏内容请回复





您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|佐喃寂静

GMT+8, 2024-12-26 18:37 , Processed in 0.101390 second(s), 28 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表